Soient (u_n) et (v_n) deux suites définies par u_0 = 2, v_0 = 10 et, pour tout entier naturel n :

$$u_{n+1} = \frac{2u_n + v_n}{3}$$
 et $v_{n+1} = \frac{u_n + 3v_n}{4}$.

1. a. Montrer que, pour tout entier naturel n:

$$v_{n+1} - u_{n+1} = \frac{5}{12}(v_n - u_n).$$

b. Pour tout entier naturel n, on pose $w_n = v_n - u_n$.

Montrer que, pour tout entier naturel n, $w_n = 8\left(\frac{5}{12}\right)^n$.

- **2. a.** Montrer que la suite (u_n) est croissante et que la suite (v_n) est décroissante.
- **b.** Montrer que, pour tout entier naturel n, on a : $u_n \le 10$ et $v_n \ge 2$.
- **c.** En déduire que les suites (u_n) et (v_n) convergent.
- 3. Montrer que les suites (u_n) et (v_n) ont la même limite.
- **4. a.** Montrer que la suite (t_n) définie, pour tout entier naturel n, par $t_n = 3u_n + 4v_n$ est constante.
- **b.** En déduire que la limite commune des suites (u_n) et (v_n) est $\frac{46}{7}$.